This site uses cookies, as explained in our terms of use. If you consent, please close this message and continue to use this site.
Particles of emissions produced by cook stoves are deposited on kitchen walls and ceilings, turning them black over time. This is a common sight in many villages in Nepal. This observation led a team supervised by Siva Praveen Puppala, an Atmosphere Initiative scientist at the International Centre for Integrated Mountain Development (ICIMOD) to conduct a study to better understand the contribution of indoor emissions to outdoor atmosphere. “Generally, when conducting studies, cook stoves are taken to a lab and their emissions measured directly. It is assumed that the emissions generated are released into the atmosphere when in truth some particles are trapped indoors,” says Puppala. He explains that the study intends to find out the amount or percentage of smoke that makes it out.
1 min Read
The team used two sets of instruments to measure particulate matter (PM2.5), black carbon (BC), carbon dioxide (CO2), carbon monoxide (CO), and total volatile organic compounds (TVOCs). One was placed right next to a cook stove to measure the total emissions produced. The other set was installed at the most prominent smoke exit spot. “The most visible spots were selected to do the measurements,” confirms Sagar Adhikari, an emissions measurement research associate at ICIMOD.
The percentage of emissions going out into ambient air is calculated by deducting the amount of emissions existing the kitchen from the total emissions produced by the cook stove. Researchers collected samples from five houses in Gauthali, a village in Chitwan, for the study. All samples were of biomass fuel burning cook stoves.
In addition, four e-samplers were installed in four different locations for 20 days (as shown in Figure 1). Two were installed at the village centres—in Simreni and Gauthali; and two at background locations—Baghmara and Chitrasen Community Forest. The background locations don’t have any emission sources and are away from human intervention. The Chitwan National Park Air Quality Observatory (CAQO) will also be considered one of the background sites for this study.
The measurements extracted from the background will later be deducted from the village measurements to calculate the contribution of village household level emissions to village ambient air quality. “The information generated from this study could help us understand the impact of household level emissions and background air pollution on villagers’ health. We will be able to calculate the percentage of risk that people are exposed to in a given area,” says Puppala. This study will extract both household and village level contributions to ambient air. Parth Sarathi Mahapatra and Alpha Thapa from ICIMOD’s Atmosphere Initiative were also involved in the study.
Share
Stay up to date on what’s happening around the HKH with our most recent publications and find out how you can help by subscribing to our mailing list.
Related content
Effective management of river basins for multiple benefits, such as the availability of water for domestic use, agriculture, and energy, ...
The perpetuation of gender roles is a repetitive, systematic, and recurring behaviour. It perpetuates within the social structure by defining ...
Since the inception of the Initiative in Myanmar, partners have participated in a range of REDD+ Himalaya activities including a ...
[caption id="attachment_8392" align="aligncenter"] Minister Industry, Som Prasad Pandey at Kailash brand LaunchPhoto: ...
Many experts and researches have claimed that women suffer the impacts of climate change more than men do. This is ...
The study focused on the multiple drivers of change impacting women in Nepal and ...
Eighty-plus policy maker and journalist participants from Afghanistan China, India and Pakistan, were present as Chief Minister of Gilgit Baltistan, ...
The first meeting of the HKH High-Level Task Force took place virtually on 22 February 2021. ...