This site uses cookies, as explained in our terms of use. If you consent, please close this message and continue to use this site.
2 mins Read
The Indus is one of the most meltwater-dependent rivers on earth. It hosts a large, rapidly growing population, and the world’s largest irrigation scheme. Understanding the hydrology of the upper Indus basin is challenging. The Hindu Kush, Karakoram and Himalayan mountain ranges are difficult to access, making field measurements of the meteorological, glaciological and hydrological processes difficult. As a result, these processes are still poorly understood. To make things more complex, climate change projections for the Indus basin show a very large spread. The recent (open access) paper published in PLOS ONE presents hydrological projections for the 21st century in the upper Indus basin based on a cryospheric-hydrological model forced with an ensemble of downscaled General Circulation Model outputs.
Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique that accounts for changes in precipitation extremes is used.
The focus of the analysis in this study is not only on changes in sources of runoff and water availability, but also on changes in seasonality and hydrological extremes, which are still large unknowns in the upper Indus basin. The study concludes that the upper Indus basin faces a very uncertain future in terms of water availability towards the end of the 21st century. Despite the large uncertainties in future climate and water availability scenarios, basin-wide patterns and trends of intra-annual shifts in water availability are consistent across climate change scenarios. For the near future, these trends mainly consist of minor increases in summer flows combined with increased flows during other seasons. For the far future, the trends show decreases in summer flows combined with stronger increasing flows during the other seasons. Furthermore, increases in intensity and frequency of extreme discharges are found for most of the upper Indus basin and for most scenarios and models considered, implying increases in flooding events during the 21st century.
Population growth in combination with increasing standards of living and associated increases in energy and food production will continue to expand the downstream water and energy demand. This implies a growing dependency on uncertain future water resources, which calls for sound basin-wide adaptation strategies to be developed across sectors that take into account the changing demand and supply in the Indus basin as well as the uncertainties therein.
Share
Stay up to date on what’s happening around the HKH with our most recent publications and find out how you can help by subscribing to our mailing list.
Relative content
Embankment in Koshi Basin has further increased flood damage. This new finding was based on a research by ICIMOD Koshi ...
Articles written by ICIMOD staff members on the occasion of World Environment Day 2017 River basin management approach could increase agricultural ...
As we join the global community in marking World Water Day with the theme ‘Accelerating Change’, we are yet again ...
We recently launched a resource book – The Koshi River Basin: Insights into biophysical, socioeconomic, and governance ...
ICIMOD celebrated World Environment Day 2015 in collaboration with the Government of Gilgit Baltistan, the Pakistan Agricultural Research ...
The Chittagong Hill Tracts of Bangladesh hold great promise for the production and commercialization of non-timber forest products such as ...
ICIMOD is pleased to announce the four winners of the ICT for Mountain Development Award 2014. They are Avinash Jha ...
Beekeeping is an income generating option in several areas across HKH region. A group of experts from the Initiative International ...