Back to news
4 May 2021 | Cryosphere

Reanalysed and improved mass balance data from Mera Glacier

2 mins Read

70% Complete
Patrick Wagnon, from The French National Research Institute, marking the snow layer with artificial colour in the accumulation zone (~ 5700 masl) of Mera Glacier for the accumulation measurement the following year. Photo: Arbindra Khadka/ICIMOD

Mera Glacier, in the Everest region, is one of few glaciers in the HKH region whose glaciological mass balance data have been compared and reanalysed with geodetic measurements. Comparison of glaciological and geodetic data requires several years of measurement records and provides insight into biases in the field measurements. Field-based monitoring activities of Mera Glacier began in 2007, and today, it is one of the few glaciers in the region with reasonable years of mass balance series to compare with geodetic data.

 

Comparing glaciological and geodetic data

Our latest study discusses the geodetic and glaciological measurements of Mera Glacier, investigates the reasons for the differences, and compares the results with those from other parts of the region. We used glacier mass balance data from 2012 to 2018, which was collected from a network of bamboo stakes installed on the glacier. Our study finds that glacier mass balance data is consistent in the lower zone of Mera Glacier, but there is a slight overestimation in its upper zone.

Glaciological mass balance calculations do not consider the influence of natural processes such as snowdrift, sublimation, and other wind-driven ablation processes on glacial surfaces. These important factors are significant at high elevation. The large spatial variability of mass balance is driven by the local topography, aspect change, and wind direction. The measurement network on Mera Glacier is not dense enough to capture this variability, and thus the systematic overestimate of Mera Glacier’s mass balance is attributed to an overestimation in the accumulation zone.

The limited number of measuring sites is due to the difficulties in accessing these sites at high altitudes, which has led to a limited stake measurement network in the upper part of the glacier. Thus, these measurements do not accurately reflect spatial variations in snow accumulation.

Patrick Wagnon performing maintenance work
Patrick Wagnon performing maintenance work on the automatic weather stations at 5800 masl on Mera Glacier. Mount Everest is visible in the background. Photo: Arbindra Khadka/ICIMOD

 

Glacier mass loss

Contrary to the findings of earlier studies which suggest the overall mass balance of Mera Glacier is in balance, reanalysed data from 2007-2019 suggests that the glacier has been losing mass. This finding is consistent with the trend observed in regional averages for the central Himalaya. Our study also observed a succession of negative mass-balance years since 2013, but this mass loss is low compared to other glaciers in the Everest region.

 

Moving forward

ICIMOD and our partners will continue monitoring Mera Glacier and improve measurements of the accumulation zone by exploring alternative methods such as modelling, observation, and remote sensing to better understand the different factors affecting mass balance.

Stay current

Stay up to date on what’s happening around the HKH with our most recent publications and find out how you can help by subscribing to our mailing list.

Sign Up
5 Aug 2022 News
Supporting the Kamala Basin Water Resources Development Strategy implementation project

On 17 May 2022, we held a hybrid inception meeting to strengthen the development, planning, and implementation of the

7 Dec 2018 DFAT Brahmaputra
Benefit Sharing from Hydropower Generation in South Asia

These studies were conducted by the Sustainable Development Policy Institute (SDPI), Pakistan; People’s Science Institute (PSI), Dehradun, India; the South ...

19 May 2020 Cryosphere
Surge-like instability in the western Kunlun Shan calls for regular glacier monitoring

Glacier surges are often linked to instabilities in temperature and/or precipitation combined with the deformable properties of a glacier. Excessive ...

Devastating floods in Uttarakhand

Across the globe, so many people have seen visuals of or heard about the flooding event which occurred in Uttarakhand, ...

25 Jun 2018 Cryosphere
CMP-B professionals trained on HEC-RAS Flood Modelling

ICIMOD is currently supporting a socio-economic and vulnerability assessment of the Punatshangchu basin as part of the Cryosphere Monitoring Programme ...

21 Apr 2022 KDKH
Understanding disaster risks and building collaborative efforts for preparedness and adaptation in the Koshi Basin

The Koshi Disaster Risk Reduction Knowledge Hub (KDKH) Annual Dialogue  brought together more than 70 researchers, policymakers, ...

Second regional UIBN meeting focuses on collaboration, capacity building, and knowledge sharing across the Indus

The second Regional Upper Indus Basin Network Annual Meeting (RUAM) saw participants deliberate on the need for greater exchange of ...

10 Feb 2015 News
Inception workshop on Cryosphere Monitoring Programme – Bhutan held in Thimphu, Bhutan

The main focus of the programme is to build the capacity of national agencies including DHMS for long-term cryosphere monitoring ...