Back to news
21 Jun 2019 | Indus Basin Initiative

Understanding of glaciers’ health calls for precise estimations of ice losses into water equivalent

2 mins Read

70% Complete
Surface elevation change in the whole period in most of the densely glacierized regions of the sub-basins (excluding Beas, Ravi, and Satluj for better visualization) of the Indus basin

Glaciers in the upper Indus supply more than half of the river water and are experiencing significant melting. There is much discussion on the recent melting rate, which involves considerable uncertainties. A recent study reported one of these uncertainties to be caused by density assumptions for volume-to-mass change conversion, hindering estimations of precise glacier mass change.

The majority of previous studies used constant densities for volume-to-mass change estimations. The average density assumption for volume-to-mass conversion represents a potential source of error and has substantial variability in geodetic mass balance measurements. The density assumption must be used with caution as it depends on several factors, including the magnitude of elevation changes, in addition to the terrain (as our study considered). A constant density of 850 ± 60 kg/m3 in a more extended period (>3 years as suggested by Huss (2013)) may not be useful for glaciers with significant positive thickness change. Our study presents the sensitivity of ice density assumptions for volume-to-mass change conversion in the Indus basin. We used four different criteria for converting ice loss into water equivalent with different combinations of slope (below and above 20° and 25°) with ice densities of 600, 800, 850, and 900 kg/m3.

The bias caused by the average density assumption of 850 kg/m3 varied between −0.20 and +0.09 m w.e.a-1 throughout the Indus basin. The bias comes mainly from the thickness change and glacier cover above 20° and 25° slopes where 600 kg/m3 density was assumed. The glacier cover area above slopes of 25° is approximately more than 40% of the whole glacierized region, but the bias is more concentrated in the Karakoram and adjacent region, where the magnitude of thickness change of glacier ice above 25° is higher. We also found a contrasting pattern between the east and west of the Karakoram glaciers with significant bias. The bias in the Hindu Kush and Himalaya is comparable. Overall, the bias due to the constant density assumption results in a reduction of the imbalance by 35%.

At the Indus basin scale, the mass balance is extremely negative in the northwest of the southern sub-basins. The glacier mass balance in the south of the Himalaya, including the Chenab, Jhelum, and Ravi sub-basins, is noticeably negative, compared with the other sub-basins. However, the losses in these sub-basins, excluding the Chenab, only exert a small effect on the river flows because of the small glacial coverage. The negative mass balance during the study period contributed approximately +0.014 ± 0.016 mm/a1 to global sea-level equivalent. This imbalance is equivalent to one-third of the contribution by all the glaciers in the High Mountain Asia (HMA) estimated during 2000–2016 by Brun et al. (2017), while covering one-fourth of the total glacierized area. These results suggest that declining mass in the Indus basin is as important as that in the rest of the HMA.

Our study shows that the glacier mass losses are mostly from the Himalaya and the Hindu Kush regions in the Indus basin. Future changes in the climate will affect glaciers and downstream river flows, and the 21st-century projections of these changes are extremely uncertain. It is therefore crucial to collect more data, including accurate glacier ice density for volume to mass conversion, to understand the mass imbalance better in the future.

Additional information

Link to the full published article: https://doi.org/10.1016/j.jhydrol.2019.04.057

Citation for the full article: Muhammad, S., Tian, L., & Khan, A. (2019). Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. Journal of Hydrology, 574:467–475.

Stay current

Stay up to date on what’s happening around the HKH with our most recent publications and find out how you can help by subscribing to our mailing list.

Sign Up

RELATED CONTENTS

Continue exploring this topic

30 Mar 2018 REDD+
ICIMOD delegation discusses REDD+ activities in Mizoram, India

Reiek and Ailawng villages in the Mamit district in Mizoram are well known for growing organic turmeric in India. Local ...

15 Apr 2015 News
Countries endorse post-2015 Framework for Disaster Risk Reduction

A post-2015 Disaster Risk Reduction Framework that aims to reduce ‘substantially’ the global disaster mortality and the number of people ...

Transboundary Cross Learning in the Kanchenjunga Landscape

To learn best practices in Kangchenjunga Landscape, India on Ecotourism (home stay programme), waste management, off-seasonal vegetable ...

1 Mar 2015 News
Second Workshop on Hindu Kush Himalayan Monitoring and Assessment Programme (HIMAP)

Perceiving Drivers of Change as the key global issues and trends driving change in the HKH Region, International Centre for ...

Waste management, sustainable tourism, and the quest to become India’s cleanest village

With support from the Kangchenjunga Landscape Conservation and Development Initiative (KLCDI) at the International Centre for Integrated Mountain Development (ICIMOD), ...

15 Apr 2015 News
Observing the Kailash progress

A team of officials from the Department for International Development (DFID) under the United Kingdom government visited the districts of ...

18 Jul 2019 News
Combining top–down and bottom–up: Designing a watershed management plan for Dhankuta Municipality

In the first consultation meeting with the vice mayor, there was a consensus that the conservation of water sources is ...

14 Dec 2015 News
Expanding Efforts to Revive Koshi’s Drying Springs and Ponds

  Local community leaders from village development committees (VDCs) gathered  2 Decem-ber 2015 in Bhakunde Besi, Kavre for a one day ...