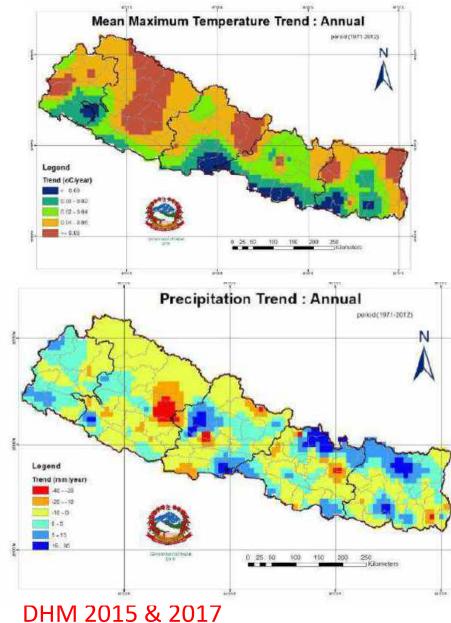
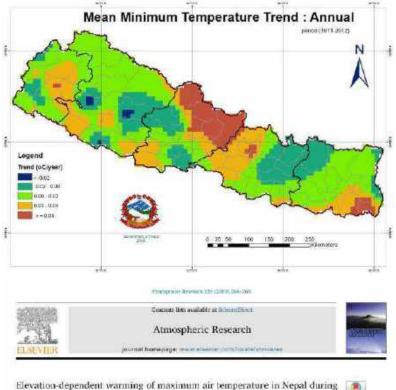
Dendroecological and Dendroclimatic Study in Api-Nampa Conservation Area, Nepal Himalaya

Narayan Prasad Gaire^{1,2}, Ze-Xin Fan², Sanjaya Bhandari³, Uday Kunwar Thapa⁴, Santosh Kumar Shah⁵, Dinesh Raj Bhuju⁶

¹Department of Environmental Science, Patan Multiple Campus, Tribhuvan University, Nepal


²Key Lab of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, PR China


> ³Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN, USA ⁴Department of Geography, Environment and Society, University of Minnesota, Minneapolis, MN, USA ⁵Birbal Sahni Institute of Palaeo Sciences, Lucknow, India ⁶Nepal Academy of Science and Technology, Lalitpur, Nepal Email: <u>npgaire2007@gmail.com</u>; <u>npgaire@cdes.edu.np</u>

> > 2021.04.20

Background

Rapid Climate Change in Nepal Himalaya

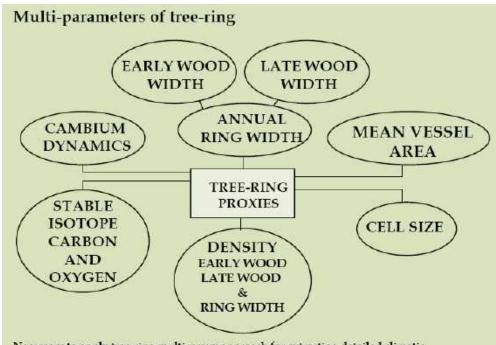
Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015 Sudeen Thakur^a, Suchana Dahal^a, Dibas Shrestha^a, Nicolas Guvennen^a, Emanuele Romano^a, ^{Nic} RESEARCH ARTICLE

Rising mean and extreme near-surface air temperature across Nepal

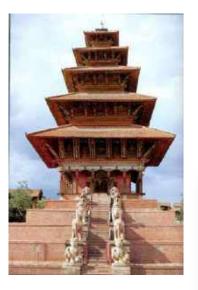
Ramchandra Karki^{1,2} (i) Shabeh at Hasson^{1,3} (i) 1. Lars Gerlitz⁴ 1 Rocky Talchabhadel^{2,5} (ii) 1. Udo Schickhaff¹ 1. Thomas Scholton⁶ 1. Järsen Böhner¹ (ii) Rochet 1.900 207 [1] Robel 2.600 263 [1] Acapta 9.600 2010 003. (2009);5600

RESEARCH ARTICLE.

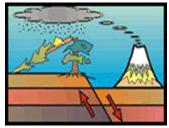
Spatio-temporal variability of extreme precipitation in Nepal

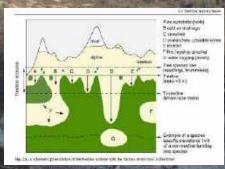

A Designation of A star tel

Rocky Taichabhadel^{1/2} 0 | Ramchandra Karki^{2,4} | Bhesh Raj Thapa⁴ | Manisha Maharjan⁵ | Barod Parajali²


Dendrochronology?

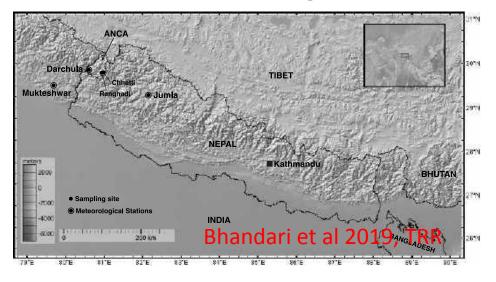
- Tree is a recorder, a biological databank that records and stores the information from the environment.
- Dendrochronology science uses tree rings dated to their exact year of formation to analyze temporal and spatial patterns of processes in the, biological,
 - physical and cultural sciences.
- Tree-rings are natural proxy climate source


Necessary to apply tree ring multi-proxy approach for extracting detailed climatic information from long tree-ring chronologies.

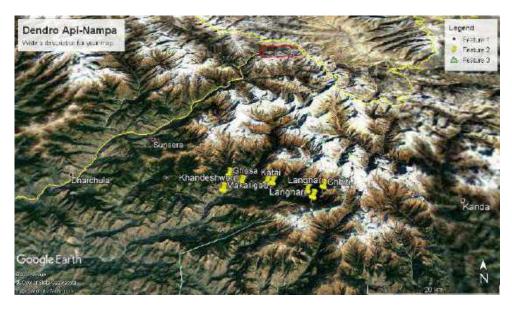


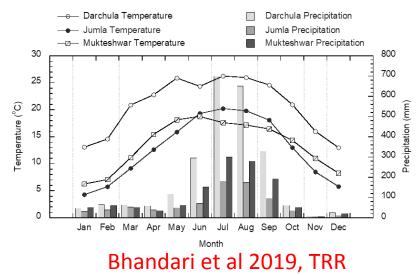
What is treeline? Why treeline research?

A life-form boundary that limits regional tree growth, irrespective of species


Treeline at Pangboche, Mt. Everest Region, Nepal

Christian Körner, 2012, Alpine treelin


Objectives


- To check the dendrochronological potential of multiple tree species from the ApiNampa Conservation Area (ANCA)
- To check the climatic sensitivity and resilience of different forests in the ANCA to climate change
- To assess treeline dynamics in the region
- To reconstruct climatic history of the region

Study Area and Climate

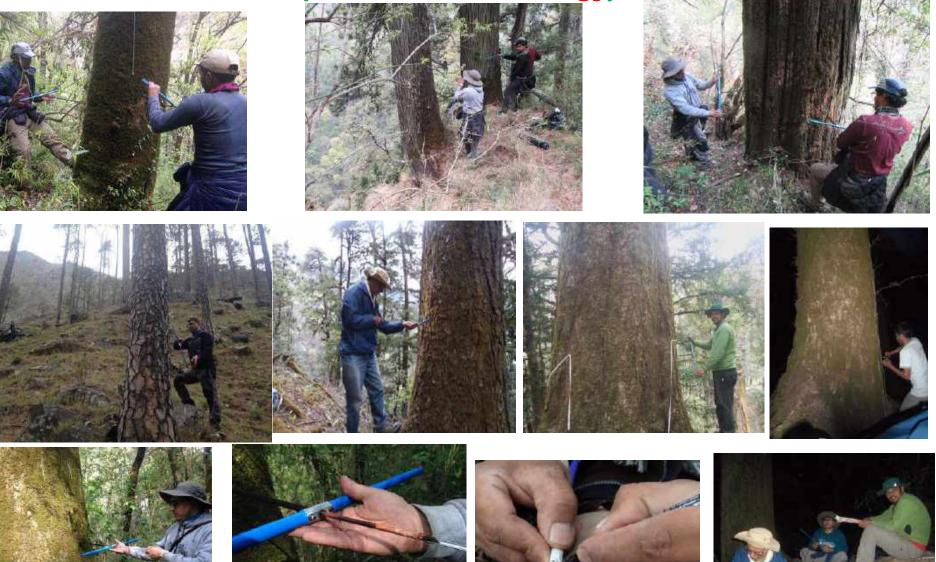
Field Visits

(2014 and 2018)

Field Methods : Treeline Dynamics

Dendroecological survey

Belt transect: 20 m wide and 100 m to 250 m long

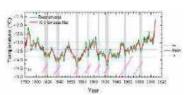


Field Methods : Tree Core Sample Collection

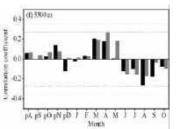
(for Dendroclimatology)

1. Air drying

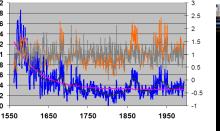
2. Mounting & Air drying



3. Sanding & Polishing (Machine or hand)



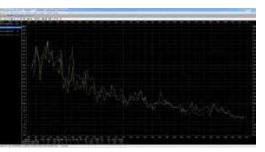
4.Counting and dating (Streozoom microscope)



9. Climate Reconstruction (treeclim or R)

8. Growth-climate Response analysis & Model development (boorRes and treeclim)

Laboratory analysis (Dendroclimatology)


1.8 1.6 1.4 1.2

0.6 0.4

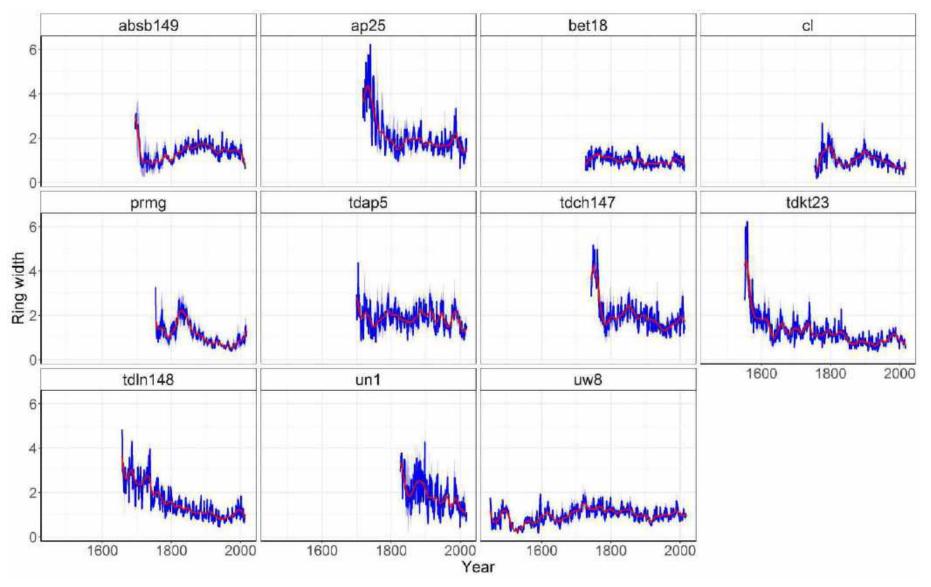
0.2

7. Standardization & Chronology dev

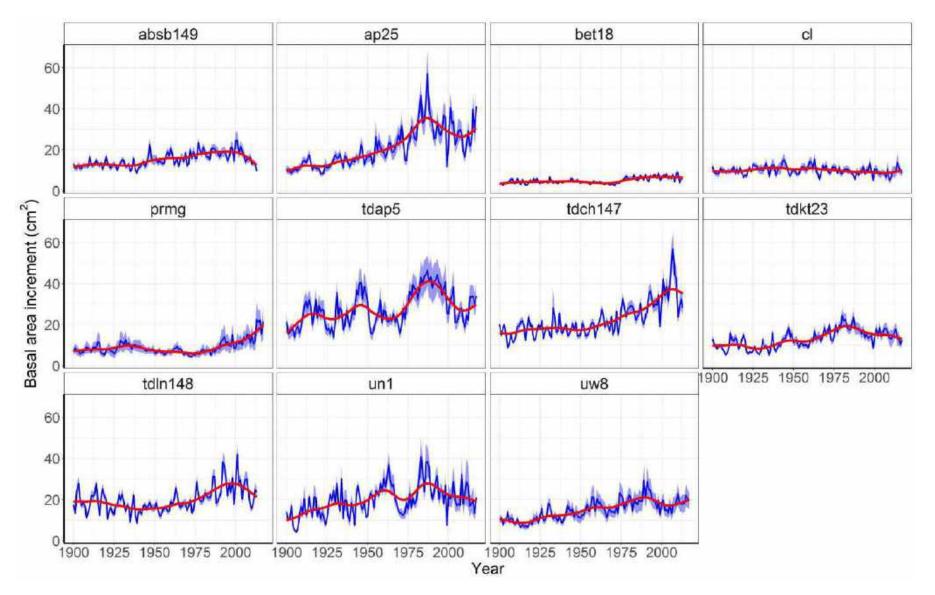
(dpIR & ARSTAN)

6. Crossdating (TSAP & COFECHA)

5. Measurement (LINTAB)


Results and discussion

TRW Chronologies from ANCA


- > 11 sampled species
- 13 Chronologies, 10 (or 9) species, 5 conifers, 5 broadleaved (3 diffuse porous, 2 ring porous)
- > 1 species (Acer species not measured yet)
- > Analysis incomplete (Aesculus, Juniper and Pine)
- Chronology length: 192 to 567 (1451-2017 CE)

Site_Code	Species_name	# trees	# cores	First_yr	Last_yr	Period	Age_min	Age_max	Age_mean	AGR_mean	AGR_median	AGR_min	AGR_max	AGR_std	rho	AR1
absb149	Abies_spectabilis	22	41	1696	2013	318	63	318	173.8	1.57	1.40	0.77	2.95	0.79	0.323	0.68
ap25	Abies_pindrow ??	22	37	1719	2017	299	81	299	159.1	1.91	1.69	0.52	4.00	1.12	0.376	0.57
bet18	Betula_utilis	40	61	1727	2013	287	39	287	136.3	1.06	0.96	0.36	3.20	0.61	0.334	0.55
cl	Unidentified	3	6	1755	2017	263	188	263	227.2	0.99	0.87	0.88	1.15	0.48	0.423	0.71
fl	Aesculus_indica	26	26	1729	2017	289	51	289	141.2	2.29	2.11	0.82	4.16	1.23	0.106	0.67
jure153	Juniperus sp.	22	46	1565	2017	453	183	453	338.1	0.93	0.78	0.44	1.57	0.60	0.049	0.64
prmg	Pinus_roxburghii	5	9	1754	2017	264	77	264	203.7	1.11	0.92	0.77	1.63	0.73	0.438	0.72
tdap5	Tsuga_dumosa	17	28	1700	2017	318	70	318	187.0	2.06	1.78	0.61	4.15	1.29	0.327	0.64
tdch147	Tsuga_dumosa	21	40	1742	2013	272	92	272	172.0	1.89	1.69	0.45	3.53	0.99	0.439	0.60
tdkt23	Tsuga_dumosa	24	39	1550	2017	468	89	468	296.1	1.06	0.87	0.59	1.96	0.74	0.420	0.66
tdln148	Tsuga_dumosa	21	34	1657	2013	357	164	354	282.2	1.38	1.12	0.90	2.23	0.86	0.517	0.63
un1	Unidentified	3	4	1826	2017	192	146	192	166.0	1.82	1.63	1.59	2.24	0.92	0.640	0.39
uw8	Ulmus_wallichiana	18	26	1451	2017	567	65	567	264.2	1.01	0.85	0.43	2.10	0.62	0.229	0.70

Raw TRW Chronologies

BAI Chronologies

Growth-Climate Relationships

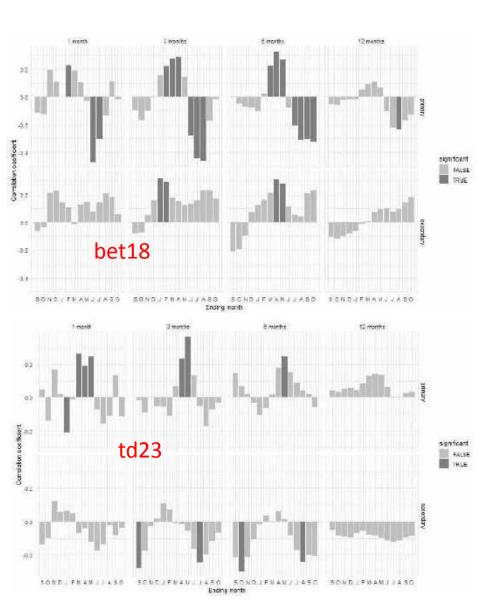
CRU data (1901 to now)

	Trnean																			
	pJun	pJul	pAug	pSep	pOct	pNov	рDec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	DJF	MAM	JJAS
std_ap25	-0.26	-0.20	-0.09	-0.08	-0.10	0.02	-0.12	0.05	-0.02	-0.28	-0.26	-0.35	-0.25	-0.14	0.00	-0.01	-0.02	-0.03	-0.39	-0.20
std_bet18	-0.26	-0.09	0.04	-0.01	-0.02	0.15	0.17	0.11	0.01	-0.16	0.05	0.14	0.35	0.28	0.22	0.11	0.07	0.13	0.00	0.40
std_tdap5	-0.26	-0.23	-0.20	-0.29	-0.27	-0.11	-0.17	0.06	-0.09	-0.27	-0.23	-0.15	-0.12	-0.07	-0.07	-0.20	-0.15	-0.09	-0.30	-0.17
std_tdkt23	-0.28	-0.28	-0.07	-0.14	-0.06	0.07	0.05	0.13	0.04	-0.22	-0.13	-0.20	-0.08	-0.03	0.03	-0.13	0.01	0.11	-0.25	-0.09
std_tdch147	-0.31	-0.11	0.02	-0.13	0.02	0.05	-0.05	0.17	0.16	-0.15	-0.16	-0.31	-0.07	0.19	0.23	-0.02	0.13	0.15	-0.27	0.09
std_tdln148	-0.20	-0.05	0.01	-0.07	0.03	0.08	-0.01	0.15	0.09	-0.20	-0.19	-0.27	-0.08	0.08	0.17	0.10	0.13	0.13	-0.29	0.06
std_uw8	-0.10	-0.05	-0.03	0.10	0.11	0.23	0.24	-0.18	0.06	0.06	0.06	0.05	0.16	0.03	0.05	0.10	0.08	0.05	0.08	0.15
std_cl	0.11	-0.06	-0.19	-0.27	-0.33	-0.44	-0.37	-0.32	-0.37	-0.27	-0.33	-0.11	-0.11	-0.06	-0.07	-0.13	-0.19	-0.52	-0.32	-0.15
std_un1	-0.17	-0.20	-0.04	-0.13	-0.15	-0.03	-0.12	0.01	0.12	-0.09	-0.18	-0.18	-0.07	-0.04	-0.07	-0.03	-0.14	0.04	-0.20	-0.08
std_prmg	0.16	0.32	0.40	0.39	0.30	0.35	0.33	0.14	0.19	0.16	0.18	0.10	0.15	0.24	0.39	0.44	0.42	0.30	0.20	0.41

	Precip	oitation																		
	pJun	pJul	pAug	pSep	pOct	pNov	рDec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	DJF	MAM	JJAS
std_absb149	0.28	0.16	-0.11	-0.08	-0.02	0.09	0.23	-0.09	-0.10	0.15	-0.01	0.14	-0.03	0.12	-0.06	0.09	0.01	-0.03	0.14	0.06
std_ap25	0.04	0.02	-0.11	-0.01	-0.09	0.21	0.24	-0.12	-0.03	0.31	0.39	0.32	0.05	-0.04	-0.08	0.06	-0.05	0.02	0.53	-0.01
std_bet18	0.07	0.01	-0.12	-0.11	-0.11	0.20	0.10	0.02	0.24	0.20	0.09	-0.02	-0.45	-0.31	-0.12	0.11	-0.01	0.23	0.14	-0.35
std_tdap5	0.18	0.10	-0.04	0.14	-0.05	0.08	0.16	-0.16	0.07	0.22	0.26	0.06	-0.01	-0.01	-0.01	0.18	-0.03	0.03	0.29	0.07
std_tdkt23	0.15	0.02	-0.11	0.05	-0.13	0.17	0.02	-0.20	0.00	0.27	0.18	0.24	-0.07	-0.16	-0.11	0.14	-0.11	-0.10	0.36	-0.09
std_tdch147	0.28	-0.01	-0.20	0.00	-0.04	0.21	0.05	-0.28	-0.08	0.25	0.21	0.28	-0.11	-0.24	-0.20	0.00	-0.14	-0.19	0.38	-0.25
std_tdln148	0.19	-0.05	-0.07	0.01	-0.08	0.23	0.08	-0.23	0.09	0.20	0.26	0.27	-0.02	-0.17	-0.24	-0.04	-0.12	-0.02	0.38	-0.21
std_uw8	0.03	-0.10	-0.11	-0.17	0.01	0.00	0.19	0.19	-0.03	-0.02	-0.07	-0.05	-0.24	0.01	-0.07	-0.09	-0.10	0.16	-0.07	-0.17
std_cl	0.06	0.20	0.23	0.26	0.08	-0.02	0.12	0.16	0.00	0.06	0.09	-0.03	0.21	0.14	0.20	0.09	0.13	0.14	0.07	0.29
std_un1	0.05	0.11	0.01	-0.03	0.06	0.11	0.11	-0.12	-0.16	0.13	0.12	0.06	-0.07	-0.06	0.08	0.00	0.07	-0.13	0.16	-0.02
std_prmg	-0.04	-0.26	-0.28	-0.18	-0.04	0.02	-0.06	-0.10	0.20	0.06	0.07	-0.06	0.01	-0.12	-0.27	-0.21	-0.09	0.06	0.04	-0.27

	Year_sof	PDSI																		
Year	pJun	pJul	pAug	pSep	pOct	pNov	pDec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	DJF	MAM	JJAS I
std_absb149	0.31	0.33	0.19	0.14	0.14	0.14	0.19	0.17	0.05	0.14	0.14	0.19	0.13	0.20	0.11	0.14	0.13	0.15	0.16	0.15
std_ap25	0.15	0.19	0.13	0.09	0.06	0.08	0.19	0.17	0.12	0.24	0.34	0.41	0.33	0.30	0.23	0.21	0.20	0.17	0.35	0.28
std_bet18	0.05	0.09	0.02	-0.03	-0.04	-0.01	0.07	0.11	0.17	0.20	0.18	0.13	-0.03	-0.04	-0.05	0.02	0.02	0.12	0.18	-0.02
std_tdap5	0.27	0.31	0.26	0.27	0.25	0.24	0.30	0.25	0.23	0.27	0.32	0.33	0.29	0.28	0.25	0.26	0.25	0.27	0.32	0.29
std_tdkt23	0.10	0.12	0.07	0.09	0.05	0.06	0.06	-0.01	0.01	0.11	0.16	0.23	0.14	0.09	0.06	0.12	0.08	0.03	0.17	0.11
std_tdch147	0.19	0.13	0.07	0.04	0.01	0.05	0.05	-0.06	-0.05	0.07	0.12	0.20	0.10	-0.02	-0.04	-0.02	-0.05	-0.02	0.14	0.01
std_tdln148	0,19	0.18	0.14	0.08	0.06	0.09	0.13	0.04	0.08	0.18	0.24	0.28	0.20	0.11	0.03	0.01	-0.02	0.09	0.24	0.09
std_uw8	-0.06	-0.10	-0.15	-0.18	-0.17	-0.16	-0.09	0.01	-0.05	-0.05	-0.09	-0.12	-0.18	-0.11	-0.15	-0.17	-0.20	-0.05	-0.09	-0.16
std_cl	0.11	0.15	0.22	0.27	0.26	0.25	0.28	0.31	0.23	0.25	0.27	0.25	0.28	0.28	0.31	0.27	0.30	0.29	0.27	0.30
std_un1	0.07	0.11	0.08	0.07	0.08	0.09	0.13	0.06	-0.03	0.04	0.06	0.03	-0.01	-0.02	0.00	-0.01	0.01	0.06	0.05	-0.01
std_prmg	-0.13	-0.22	-0.25	-0.31	-0.27	-0.27	-0.27	-0.20	-0.10	-0.08	-0.07	-0.08	-0.08	-0.16	-0.20	-0.32	-0.30	-0.20	-0.08	-0.20

Growth-Climate Relationships

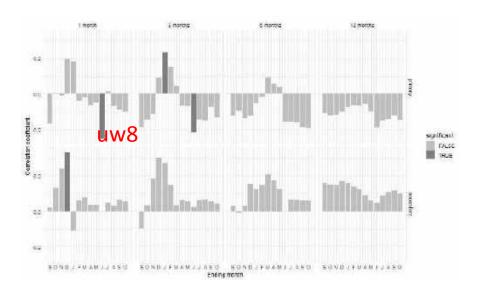

Mukteshwor data (1901 to now)

	Mukteswor_	tmean												
'ear	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	MAM	JJAS
std_absb149	0.050	-0.049	-0.147	-0.038	-0.134	0.031	-0.152	-0.008	-0.036	-0.141	-0.054	0.121	-0.143	-0.042
std_ap25	0.085	-0.041	-0.318	-0.343	-0.327	-0.149	-0.147	-0.074	-0.085	0.008	0.049	0.084	-0.439	-0.178
std_bet18	0.127	-0.164	-0.226	-0.056	0.097	0.395	0.203	0.202	0.045	0.089	0.080	0.078	-0.105	0.356
std_tdap5	0.042	-0.092	-0.271	-0.275	-0.134	-0.077	-0.142	-0.169	-0.238	-0.095	-0.085	-0.016	-0.312	-0.211
std_tdkt23	0.164	0.058	-0.262	-0.232	-0.252	-0.063	-0.086	-0.040	-0.148	0.053	0.022	0.184	-0.333	-0.121
std_tdch147	0.177	0.078	-0.221	-0.260	-0.366	-0.010	0.116	0.087	-0.036	0.169	0.031	-0.006	-0.367	0.041
std_tdln148	0.157	0.003	-0.286	-0.258	-0.357	-0.081	0.039	0.050	0.028	0.114	0.084	0.105	-0.396	-0.012
std_uw8	-0.225	-0.030	-0.027	-0.021	0.048	0.127	0.039	0.014	0.042	0.056	0.133	0.118	-0.005	0.102
std_cl	-0.355	-0.242	-0.187	-0.273	-0.037	-0.120	-0.017	-0.062	0.045	-0.097	-0.333	-0.141	-0.231	-0.075
std_un1	0.079	0.174	-0.068	-0.228	-0.016	0.003	0.023	-0.006	0.072	0.016	0.028	0.052	-0.142	0.031
std_prmg	0.325	0.062	0.151	0.040	-0.081	0.121	0.129	0.251	0.350	0.250	0.396	0.072	0.065	0.292

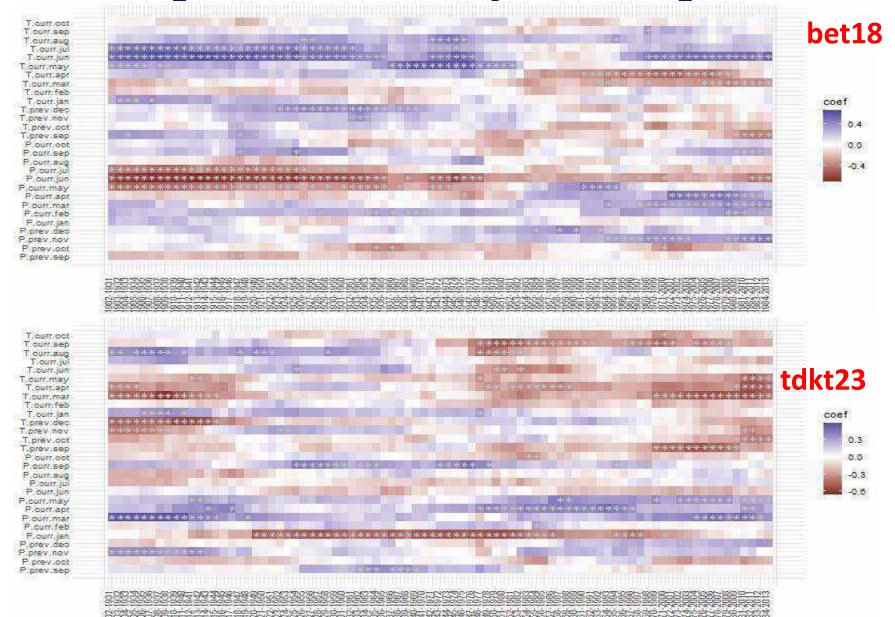
	Muktesworp	pt												
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	MAM	JJAS
std_absb149	-0.051	-0.026	0.124	0.006	0.107	-0.041	0.169	0.048	0.130	0.101	-0.038	-0.010	0.149	0.147
std_ap25	-0.018	0.048	0.292	0.387	0.332	-0.058	0.067	-0.088	0.127	-0.060	0.081	0.059	0.547	0.038
std_bet18	0.079	0.291	0.212	0.134	-0.135	-0.330	-0.220	-0.087	0.104	-0.114	0.117	-0.089	0.107	-0.197
std_tdap5	-0.071	0.096	0.221	0.294	0.048	-0.053	0.062	0.073	0.201	-0.056	0.042	-0.079	0.288	0.144
std_tdkt23	-0.122	0.054	0.358	0.201	0.157	-0.199	-0.019	-0.060	0.147	-0.128	0.091	-0.209	0.409	-0.029
std_tdch147	-0.195	0.002	0.266	0.235	0.169	-0.215	-0.153	-0.118	0.109	-0.203	0.136	-0.050	0.369	-0.136
std_tdln148	-0.138	0.136	0.210	0.258	0.256	-0.155	-0.118	-0.181	0.068	-0.184	0.098	-0.093	0.396	-0.147
std_uw8	0.204	0.008	-0.007	0.002	-0.145	-0.238	0.007	-0.111	0.042	-0.009	-0.051	0.055	-0.094	-0.109
std_cl	0.215	-0.044	0.006	0.111	0.041	0.185	0.146	0.235	0.067	0.070	0.100	0.075	0.073	0.264
std_un1	-0.088	-0.038	0.131	0.239	0.052	-0.073	0.009	0.028	0.048	0.092	0.053	0.078	0.210	0.014
std_prmg	-0.196	0.129	-0.062	-0.044	-0.051	-0.182	-0.205	-0.221	-0.081	-0.140	-0.033	-0.026	-0.089	-0.290
1														

Seasonal Response

1 control of

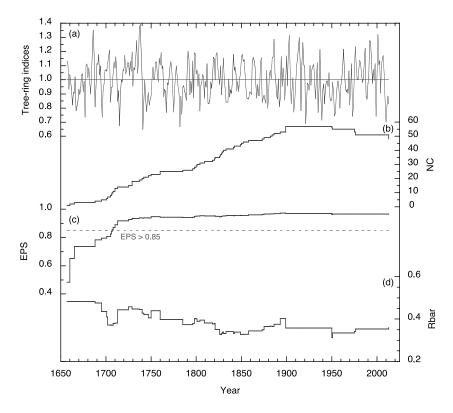


0.4 0.2 0.2 oofficient e gnificant ap25 FALSE Correlation THUE 0.2 53 412 -0.4 SONDIFMANIJASO SOND JENAN JJ450 9.04.0 三部支持 计五字符 SONDIF Ending month

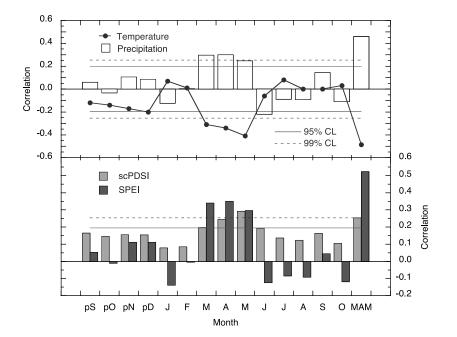

6 worths

12 months

3 months



Temporal Stability of Response



A 307-YEAR TREE-RING SPEI RECONSTRUCTION INDICATES MODERN DROUGHT IN WESTERN NEPAL HIMALAYAS

SANJAYA BHANDARI^{1,2}, NARAYAN PRASAD GAIRE^{3,4}, SANTOSH K. SHAH⁵, JAMES H. SPEER²*, DINESH RAJ BHUJU^{1,3}, and UDAY KUNWAR THAPA⁶

Figure. (a) Ring-width index chronology of *Tsuga dumosa*; (b) Number of cores used to develop this chronology; (c) EPS threshold greater than 0.85 since 1707; (d) Rbar graph from AD 1657 to 2013.

Figure. Top: Histogram showing correlations between the ring-width index chronology of *Tsuga dumosa* and climate data (AD 1897-2013) from Mukteshwar station, India. Bottom: Histogram showing correlation between ring-width index, scPDSI, and SPEI.

Spring (MAM) SPEI01 Reconstruction

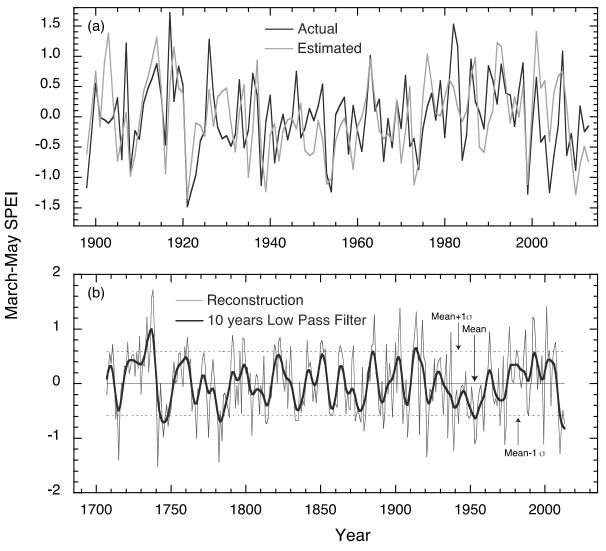


Figure. (a)Actual and estimated March-May SPEI01 fromAD1897 to 2013, and (b) Spring reconstructed SPEI along with a 10-year low pass filter for the **period AD 1707-2013**.

Table 2 Calibration and verification statistics for our March-May SPEI reconstruction. PC = Pearson correlation; RC = Robast correlation; <math>SC = Spearman correlation; RU = Reduction of Error; CE = Coefficient of Efficiency.

	Calibration	Verification	Calibration	Verification
Test	(1956-2013)	(1898-1955)	(1898-1955)	(1926-2013)
Undit	Terentiated data	ii j		
FC	0.505		0.532	
RC	0.492		0.529	
SC	0.473		0.499	
RE		0.249		0.270
CE.		0.250		0.252
1 st di	Terentiated data	£		
PC	0.446		0.434	
RC	6.444		0.380	
SC	0.430		0.357	
RE		0.189		0.199
CE		0.185		0.199

Dry periods : AD 1741–1750, 1781– 1789,

1950-1959, and 2009-2013 and

Wet periods: AD 1733–1739, 1819–1823,

1850–1853, and 1912–1914.

A long dry period :1921–1960

Longest wet period :1975–1993.

Driest years: AD 1715, 1741, 1782, and 1921

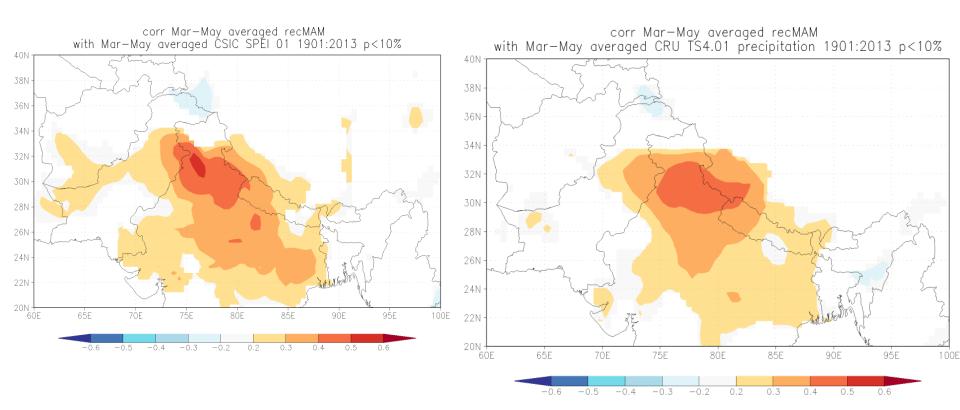
Wettest years :AD 1737, 1738, 1903, and 2001

Bhandari et al 2019, TRR

Regional coherencies

(a) Spring SPEI reconstruction from the western Nepal Himalayas (this study),

(b) Spring scPDSI reconstruction from the central Nepal Himalayas (Panthi *et al.* 2017),


(c) Spring precipitation reconstruction from the western Nepal Himalayas (Gaire *et al.* 2017),

(d) February-May precipitation reconstructionfrom the Kumaon Himalayas, India (Yadav *et al.* 2014),

(e) March-July precipitation reconstruction from Himachal Pradesh, India (Singh *et al.* 2009).

Figure. Comparison of current SPEI01 reconstruction with other regional scPDSI and precipitation reconstructions with grey bars indicating the four most severe droughts in our reconstruction. Bhandari et al 2019, TRR

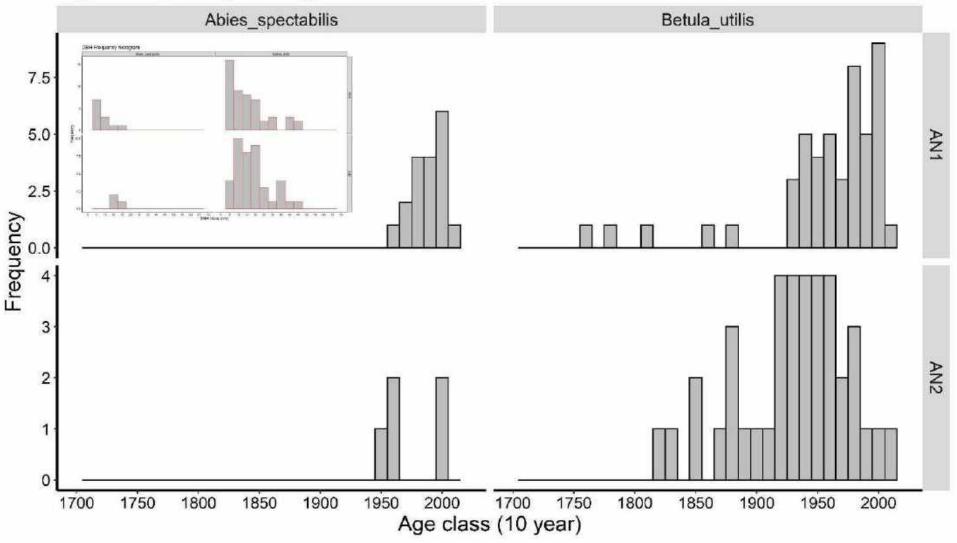
Spatial representation of Rec. SPEI

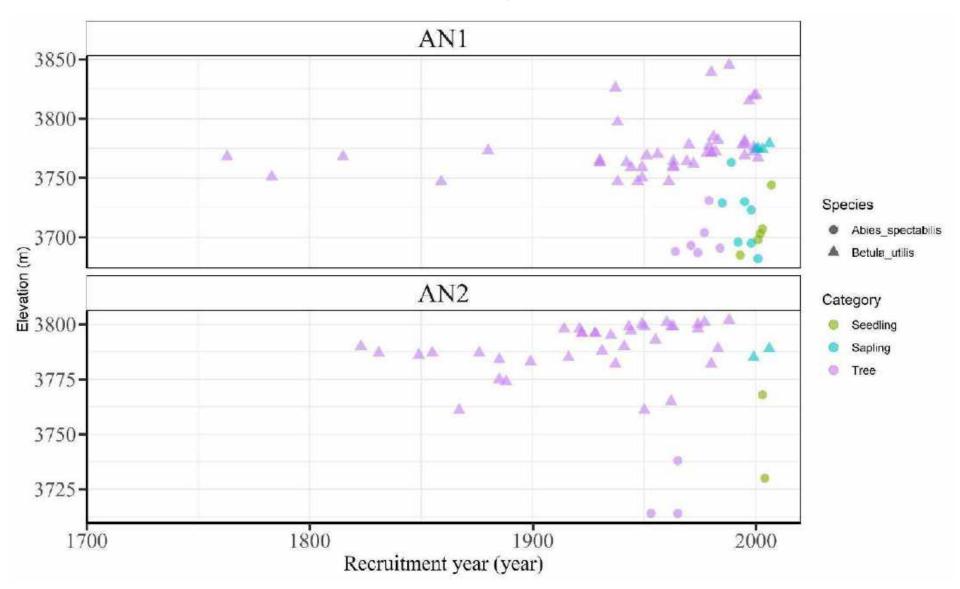
Bhandari et al 2019, TRR

Treeline at ANCA

Treeline Elevation: Deuthani (AN1): *Betula* = 3845 m, *Abies* = 3763 m ; Makarchuli (AN2): *Betula* = 3802 m, *Abies* = 3768 m

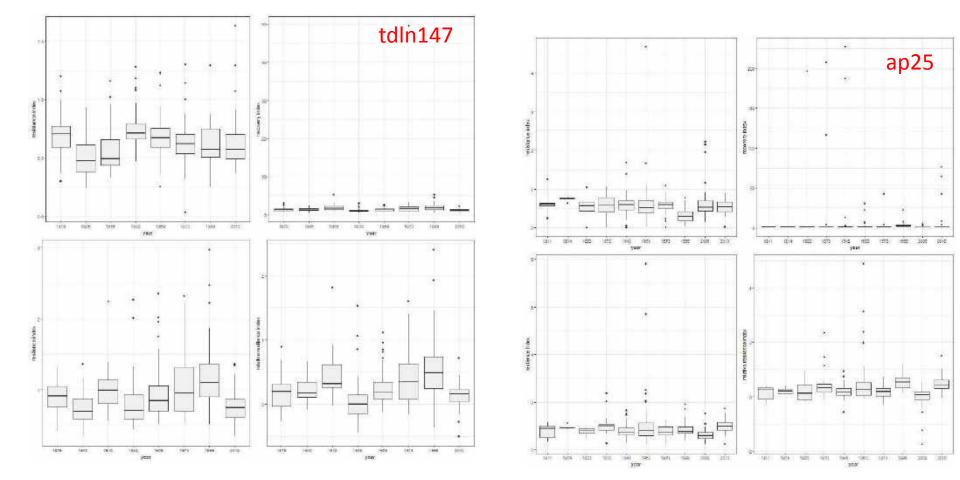
Khandeshwori Area





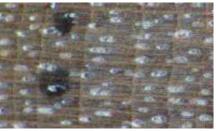
Regeneration and age structure

Age Frequency histogram



Treeline dynamics

Resilience of Forests to Climate Change


filename	specie	Pyc_5_75_Narrow	Pyc_5_75_wide
nepa147	TSDU	1758, 1767, 1776, 1785, 1789, 1794, 1847, 1893, 1905, 1916, 1999	1753, 1767, 1773, 1784, 1830, 1878, 1907, 1934, 1937, 1972, 2001,
nepa148	TSDU	1667, 1677, 1680, 1683, 1688, 1696, 1715, 1730, 1741, 1775, 1782, 1797	1666, 1686, 1734, 1743, 1812, 1830, 1886, 1894, 1914, 1937, 2001,
nepa149	ABSB	1723, 1737, 1768, 1778, 1999	1703, 1713, 1748, 1767, 1862, 1878, 1920, 1937, 1947, 1972,
nepa151	TSDU	1577, 1587, 1614, 1640, 1643, 1695, 1741, 1782, 1817, 1821, 1861, 1879	1573, 1601, 1611, 1616, 1621, 1628, 1629, 1655, 1778, 1812, 1830, 1891, 1894, 1926, 1937,
nepa154	ULWA	1619, 1640, 1669, 1685, 1689, 1722, 1802,	1648, 1668, 1688, 1887, 1905, 1926,

Wood Anatomical Analysis

Ulmus wallichiana

Betula utilis

Aesculus indica

Un-1

Acer species

Un-2

Extreme Forest Fire

Loss of evolutionary history ???

Conclusions and Way-forward

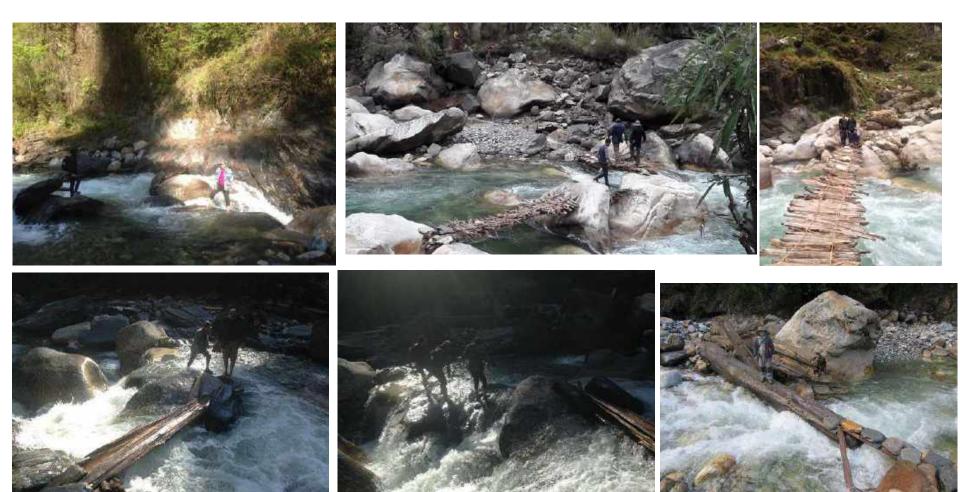
- ANCA holds dendroclimatically promising several tree species
- Spring season climate (especially moisture availability) is the main growth limiting factor
- Treeline research shows differential regeneration pattern along with stand densification as well as possible shifting
- The SPEI reconstruction showed several dry and wet episodes indicating no persistent climate trend within the past three centuries.
- Need integrated and further study using multi-proxy tree-ring parameters for better understanding of the ecosystem level climate sensitivity and vulnerability to climate change

Our study is continue. Need collaborations and support for robust results

Acknowledgements

- Kailash CAFE
- Chinese Academy of Sciences (PIFI fellowship)
- Key Lab of Tropical Forest Ecology, XTBG-CAS
- Pro-Natura Fund
- DHM, DNPWC, NTNC
- Friends
- Local people
- Field assistants
- □ My family
- Other helping hands

Acknowledgements



Thank you !!!

