# Introduction to Radar interferometry (InSAR)

Benjamin Robson and Sonam Wangchuk



# What can we get out of InSAR?

90.18.30 E

Hazard



-10 -15

15

-5

-10 -15

-5



Remote Sensing of Environment Volume 271, 15 March 2022, 112910

0 -0.5 -1 -1.5

15

0.5

Monitoring glacial lake outburst flood susceptibility using Sentinel-1 SAR data, Google Earth Engine, and persistent scatterer interferometry

Sonam Wangchuk <sup>a c</sup> 은 쯔, Tobias Bolch <sup>a</sup> 은 쯔, Benjamin Aubrey Robson <sup>b</sup>



# Infrastructure assessment

A Review of Satellite Synthetic Aperture Radar Interferometry Applications in Permafrost Regions: Current status, challenges, and trends



### Permafrost freeze + thaw





Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR

Line Rouyet a b c 名 國, Tom Rune Lauknes a, Hanne H. Christiansen c, Sarah M. Strand c d, Yngvar Larsen a

## **Rock Glacier velocity**



REVIEW ARTICLE 🔂 Open Access

**Advances in InSAR Analysis of Permafrost Terrain** 

S. Zwieback 🔀, L. Liu, L. Rouyet, N. Short, T. Strozzi

## Synthetic Aperture Radar (SAR)



# Synthetic..?



UNIVERSITY OF BERGEN

- The longer the antenna, the better the resolution.
- **Simulation** of a long antenna by combining data collected using a short antenna.
- Taking advantage of movement.

#### Slant Range

#### Ground Range



Source: https://earth.esa.int/web/guest/missions/esa-operational-eomissions/ers/instruments/sar/applications/radar-courses/content-2/-/asset\_publisher/qIBc6NYRXfnG/content/radar-course-2-slant-range-ground-range





# Formats of Sentinel 1

- Single Look Complex (SLC):
  - Backscatter and Phase Information.
  - Slant Range
- (Grid) Ground Range Detected (GRD)
  - ➢ No phase information
  - Slant range
- Level 2 Formats:
  - ➤Ocean Wind field (OWI)
  - ➢Ocean Swell spectra (OSW)
  - Surface Radial Velocity (RVL)



# Acquisition modes of Sentinel 1:

- Strip Map (SM)
  - ≻80x80 km. res. 5 m
- Interferometric Wide swath (IW)

>250 km, res. 5x20 m

• Extra-Wide swath (EW) ≻400 km, res. 20x40 m





## **Basics of SAR**



## Backscatter











# Three problems with SAR data



# Influences of layover and shadow



Standard mode, RSAT-2 Ultrafine mode & TSX/TDX StripMap mode [Cetinic, et al. 2015 (in prep.)].

## Polarisation: vertical and horizontal



# SAR Data can be polarised:

- Horizontal Horizontal (HH) co-polarisation
  - Horizontal Vertical (HV) cross-polarisation
  - Vertical Horizontal (VH) cross-polarisation
    - Vertical Vertical (VV) co-polarisation

#### ALOS PALSAR HH-polarization



#### ALOS PALSAR HV-polarization





### The band (wavelength) used is important





Figure 2: Elevation differences off glaciers between SPOT5 and SRTM C-band DEMs as a function of altitude. Filled circles represent the raw elevation differences, open circles represent the elevation differences after a correction based on terrain maximum curvature and squares the ones after a correction based on terrain plan curvature.

Source: Gardelle et al, 2012

# Summary so far

- When working with SAR data, the following is important:
  - The surface roughness  $\rightarrow$  influences backscatter
  - The relief of the area -> influences the shadowing
  - The orientation of what you are monitoring  $\rightarrow$  radar is sideways looking

Now onto InSAR:

Requires two SAR images seperated by a temporal baseline

# InSAR is the comparison of two SAR scenes

- We measure the change in phase between two images seperated by a temporal baseline (typically 6, 12, 24... days with Sentinel-1)
- We know the **wavelength** of the sensor...
- ....so we can convert a change in phase to a deformation
- Requires the area to be coherent







If we have coherence over our area of interest...

Then we can measure the change in **phase** between two acquistions

# SAR coherence

- "the degree of correlation between the two radar images"
- A function of
  - Surface properties
  - Time (temporal decorrelation)
  - Baseline between satellites
- Sometimes the coherence can be a result in itself
  - Detecting changes, for example landslides, urban development, glacier activity







**Figure 30:** Left: simplified vegetation map over Bergen area (8 classes) based on vegetation map from [Johansen, 2009 & Johansen, et al. 2009]. Right: Example of mean coherence map from RSAT-2 Standard mode dataset (using only interferograms with a temporal baseline of 24 days).

# Seasonality and coherence

- Winter:
  - Wet surfaces
  - Snow
  - Decreased vegetation



**Figure 31:** Examples of the effects of snow cover on the coherence (RSAT-2 Standard mode dataset). Top left: coherence map based on 1 interferogram in summer 2013. Top right: coherence map based on 1 interferogram in winter 2011-12. Bottom: Snow depth at the same period as the interferograms. From www.senorge.no (download: 16-02-2015).

#### Interferometric SAR (InSAR)

















University of Be



# Interferometric SAR (InSAR)

- We can therefore use InSAR to work out:
  - Topography (DEM) if we assume **no displacement** between the acquisitions
  - Displacements/Velocities (if we remove the effect of the topography) (Differential Interferometry)
    - Either by comparing two pairs of SAR images (4-pass interferometry)
    - Simulating phase differences due to topography with a DEM (2-pass)
  - ...as long as we know the baseline of the satellites and remove atmospheric noise

# **Displacements with InSAR**

Petaluma

San Rafael

Santa Rosa

Pittspurg

20 Km

Satellite imag

- Vacaville

Faimield

Concord

Walnut Gree

San Leandro

Berkeley 🔩

OneHand

Napa

San Francisco

Highmond

### Coherence

Where can we expect to get reliable estimates of radar phase?



# Interferogram: Phase patterns

- Changes in phase due to displacement, topography, atmosphere, and baseline
- Any noticeable patterns?



# Topographic simulated phase

- This is how the phase patterns would look like if it just topography influencing the result
- We therefore subtract this from our interferogram



- Interferomgram with topography removed
- How to interpret an interferogram?
  - Total displacement: number of fringes x half wavelength



# Phase Unwrapping





Geocoded Interferogram

# Unwrapping



**Geocoded Unwrapped Phase** 

**Table 1.** Rough estimation of the minimum displacement rate in an interferogram as a function of the temporal baseline for the C-Band of Sentinel 1.

| Temporal Baseline [Days] | Minimum Detectable<br>Displacement [cm/Year] | Maximum Detectable<br>Displacement [cm/Year] |  |
|--------------------------|----------------------------------------------|----------------------------------------------|--|
| 6                        | 17                                           | 170                                          |  |
| 12                       | 8.5                                          | 85.2                                         |  |
| 24                       | 4.2                                          | 42.6                                         |  |
| 36                       | 2.9                                          | 28.4                                         |  |
| 48                       | 2.2                                          | 21.3                                         |  |

# Applications of InSAR

• Rock glacier velocity, but also landslides, subsidence...



F. Cigna, D. Tapete, Remote Sensing of Environment, vol 253, 2021





# Time-series analysis - SBAS

# SBAS – Time series analysis

- The more images we use....
- ...The better we can remove atmospheric influences
- Also means we can look at seasonal changes
- A range of software packages PyRate or Mintpy most popular
- EZInSAR nice software package that integrates downloading, processing interferograms, and SBAS

|                                  | Paths                      | -                       |                              |                                                                     |                                             |  |
|----------------------------------|----------------------------|-------------------------|------------------------------|---------------------------------------------------------------------|---------------------------------------------|--|
| Preparation of SAR data          |                            |                         | ISCE Processing              |                                                                     | InSAR Time Series Analysis                  |  |
| Manage data directory            |                            |                         | Check the IPF versions       |                                                                     | StaMPS Processing MintPy Processing         |  |
| Selection of study area          |                            |                         | Select the DEM               | Visualize the DEM                                                   | Selection of InSAR Time Series processor:   |  |
| Parameters                       | of SLCs                    |                         | Selection of the processing: |                                                                     |                                             |  |
| Mode:                            | S1_IW  Satellites (For S1) |                         | SLC stack                    |                                                                     | -> StaMPS processor:                        |  |
| Path:                            | 135                        | Sentinei-1 A            | Interferogram stack          |                                                                     | Please, select the "StaMPS Processing" tab. |  |
| Pass:                            | Descending                 | Sentinel-1 B            | Select the bes               | t reference date                                                    |                                             |  |
| Date 1:                          |                            | 2020-01-04 -            | Pre-run of ISCE processing   |                                                                     |                                             |  |
| Date 2:                          |                            | 2021-12-12 • ISCE Steps |                              |                                                                     |                                             |  |
|                                  |                            | Step 1                  |                              | -> MintPy processor:<br>Please, select the "MintPy Processing" tab. |                                             |  |
| Check the SLCs Show the SLC list |                            | Run the selected step   | Parallelisation              | ······, ······ , · ····· , · ····· ,                                |                                             |  |
| Check the SLC extension          |                            | Run all the steps       |                              |                                                                     |                                             |  |
| Download the Sentinei-1 SLCs     |                            | Geocode the results     | Visualize the interferograms |                                                                     |                                             |  |

Practical information for the exercise Use SNAP to process two TerraSAR-X images over Tapado Rock Glacier

Optionally, repeat the processing with freely available Sentinel-1 data

This afternoon: demonstration of time series analysis with Mintpy